Dynamics of lattice triangulations on thin rectangles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Lattice Triangulations on Thin Rectangles

We consider random lattice triangulations of n×k rectangular regions with weight λ|σ| where λ > 0 is a parameter and |σ| denotes the total edge length of the triangulation. When λ ∈ (0, 1) and k is fixed, we prove a tight upper bound of order n for the mixing time of the edge-flip Glauber dynamics. Combined with the previously known lower bound of order exp(Ω(n)) for λ > 1 [3], this establishes...

متن کامل

A Lyapunov function for Glauber dynamics on lattice triangulations

We study random triangulations of the integer points [0, n] ∩ Z, where each triangulation σ has probability measure λ|σ| with |σ| denoting the sum of the length of the edges in σ. Such triangulations are called lattice triangulations. We construct a height function on lattice triangulations and prove that, in the whole subcritical regime λ < 1, the function behaves as a Lyapunov function with r...

متن کامل

On the Number of Lattice Triangulations

For n a positive integer, we consider triangulations of the n × n lattice set straight line embedded geometric graphs on this point set—thus with (n + 1) 2 vertices, 3n 2 + 2n edges and 2n 2 triangular faces. Figure 1: A triangulation of the 20 × 20 lattice. Extending a previous argument by Emile Anclin [1], we show that the number of triangulations of the n × n lattice is at most O(6.86 n 2), ...

متن کامل

Counting Lattice Triangulations

We discuss the problem to count, or, more modestly, to estimate the number f(m,n) of unimodular triangulations of the planar grid of size m× n. Among other tools, we employ recursions that allow one to compute the (huge) number of triangulations for small m and rather large n by dynamic programming; we show that this computation can be done in polynomial time if m is fixed, and present computat...

متن کامل

LATTICE TRIANGULATIONS 3 Theorems 1

We express the generating function for lattice points in a rational polyhedral cone with a simplicial subdivision in terms of multivariate analogues of the h-polynomials of the subdivision and of the links of its nonunimodular faces. This expression specializes to a formula for the Ehrhart series of a trian-gulated lattice polytope that generalizes an inequality of Betke and McMullen, a formula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2016

ISSN: 1083-6489

DOI: 10.1214/16-ejp4321